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S u m m a r y .  The calculation of the effects of temperature and isotopic composi- 
tion on the energy weighted moments of the dipole oscillator strength distribution 
of H 2 in the random phase approximation to the polarization propagator are 
reported. It is seen that the effect of isotopic composition is small, while that of 
temperature is of an order accessible to experiment. We find that all the mean 
excitation energies I , ,  for/~ = - 1, 0, 1, decrease with temperature as does the 
dipole oscillator strength moment S(p) for/~ > 0, while the opposite is true for 
/~ < 0. These effects are interpreted in terms of the bond length dependence of the 
excitation energies. 
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I. Introduction 

As advances in computing hardware and software design have made studies 
of electronic structure a tool rather than an end in itself, interest in the 
community of theorists has shifted from calculation of geometric and electronic 
structure to studies of properties and dynamics. Jan Linderberg, to whom this 
contribution is dedicated, has been influential in both of those fields. In the 
following, we discuss the problem of temperature and isotope effects on some 
moments of the dipole oscillator strength distribution (DOSD) of the hydrogen 
molecule, and use the polarization propagator for the calculation of the requisite 
excitation properties. We will be concerned specifically with the origin of these two 
effects in nuclear motion, and with the relative importance of the two effects and 
their absolute magnitudes with regard to whether or not they may be experi- 
mentally observable. 

Although many body techniques have been used for many years in solid state 
physics and statistical mechanics [1], it was Jan Linderberg [-2-4] in collaboration 
with Ohm [5-7] and with his students [-8] that brought the polarization propaga- 
tor formalism to bear on molecular problems. As this method has proved so fruitful 
over the years [-9, 10], especially for calculation of excitation properties of mole- 
cules, it is this method that we choose to employ here. 
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The energy weighted moments of order # of the dipole oscillator strength 
distribution of a molecule are defined as 

S(,) --- r E "  ~ d E ,  (1) 

L(t~)=fE"InE~dE (2) 

and 

L(/~) 
In I~ = S(#)' (3) 

where E and f label the excitation energies and dipole oscillator strengths of the 
system, respectively. Quantities such as these moments are interesting as they are 
related to many of the quantities characteristic of the interaction of radiation with 
matter, such as swift ion stopping and straggling, the Lamb shift, electronic 
excitation, and static polarizability [11, 12]. Although there is considerable interest 
in these quantities, they are difficult to calculate due to the necessity of having the 
complete DOSD available. Thus, most of the DOSD's available for molecules have 
been obtained by semi-empirical means, typified by the work reported in the series 
of papers by Meath and co-workers [13]. On the other hand, the polarization 
propagator provides a scheme whereby a set of transitions and pseudo-transitions 
representing the entire excitation spectrum of a molecule can be calculated, using 
a discrete representation of the continuum. Although individual the pseudo- 
transitions into the continuum as calculated here have no physical significance 
(as opposed to the actual spectrum of transitions), their integrated moments do, 
and the scheme can be used to calculate the energy weighted moments mentioned 
above. 

Previously we have been concerned with calculation of energy weighted mo- 
ments of the DOSD and of molecular properties related to them, in particular the 
mean excitation energy for stopping, Io. We have found [14-163 that many of the 
moments have significant variation with internal nuclear coordinate. Assumption 
of a Boltzmann population of rovibrational levels leads to the conclusion that the 
moments should exhibit a temperature dependence. In fact, such a dependence has 
been predicted for the stopping of low energy protons in hydrogen [16]. The origin 
of the temperature dependence is related to the changing average bond length in 
the molecule with temperature. This is a consequence of varying population of 
various rovibrational levels, which correspond to different mean internuclear 
distances arising from the asymmetric molecular potential. One might, then, expect 
that various isotopomers, having somewhat different effective molecular potentials, 
would also have somewhat different energy weighted moments of the DOSD. 
Although such differences are not expected to be large, recent advanced in experi-' 
mental techniques will soon make them accessible. In fact, there has been some 
indication [16] that for the case of energy deposition, related to the Io moment 
(vide infra), a temperature effect might be observed. There are also experimental 
reports of a possible small difference in stopping of protons in H2 and D2 for low 
energy ( < 20 keV) protons [17], and in the charge exchange and ionization cross 
sections of H2 and D 2 for low energy ( < 30 keV) protons and deuterons [18]. 

We concern ourselves here with an investigation of temperature dependence of 
S(/z) and I v for the isotopomers H2, HD and D2, with particular emphasis on the 
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relative importance of the isotope and temperature effects. We use the polarization 
propagator formalism pioneered by Jan Linderberg as the primary toot. 

2. Methodology 

As we employ the Born-Oppenheimer approximation, the electronic structure, and 
consequently the DOSD and electronic potential, of the molecule under considera- 
tion is independent of the isotopic composition. The only place that the nuclear 
masses enter the theory is in the solution of the Schr6dinger equation for the 
rovibrational states used in the temperature averaging. The differences in spectral 
moments among isotopomers reported below are thus purely consequences of 
finite temperature. 

2.1. The DOSD 

In order to calculate the spectral moments of the DOSD defined in Eqs. (1)-(3), the 
complete set of molecular electronic excitations from the ground state J0) to 
excited state In> with excitation energies {Eo,} and associated oscillator strengths 
{fo,} is needed. We obtain these, in the dipole length formulation, from the 
polarization propagator, defined as [9, 10]. 

= F<°lrot _ ,lr l°> <0fr l'><'r o0> ] 
<<r.;rb))~ o%L E-E,+Eo - ~ - ~  , (4) 

where ra is a component of the dipole operator. From the poles and residues of 
the propagator, we can determine the excitation energies (Eo = E , -  Eo) and 
transition moments (<0[rln)), from which the dipole length oscillator strengths can 
be calculated 

fd~ _- 2Eo ~ -  <01d n>" <hid0>. (5) 

All quantities are in Hartree atomic units. 
We solve the equation of motion for the propagator perturbatively, using the 

fluctuation potential as the perturbation [10]. Experience shows [19-22] that 
correlation is needed in order to calculate reliable spectral moments of the DOSD. 
One needs to calculate the propagator at least in the consistent first order 
approximation to the propagator which is identical to the random phase approxi- 
mation (RPA). At this level correlation is added in both ground and excited states 
in a balanced way, and we achieve accuracy high enough for our purposes (vide 
infra). 

The polarization propagator is evaluated using a finite basis set. The basis used 
in these calculations is the contracted (9s6p3d) Gaussian basis of Jaszunski and 
Roos [23] which we have used previously [15] for calculations on H2. The set 
admits 89 particle-hole excitations which yields a finite number of excitations 
equal to the number of allowed particle-hole excitations. As a result of the finite 
basis, we approximate the continuum with a finite number of discrete excitations 
placed such that they represent the continuum. We have found this scheme to give 
good results [19] for properties of the dipole oscillator strength distribution where 
we evaluate quantities which depend on sums over all excited states. However, no 
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physical significance can be attached to individual continuum pseudostates ob- 
tained in this way. 

Calculations were carried out o n  H 2 at 21. internuclear distances ranging from 
0.3 to 5.0 a.u. using the M U N I C H  [24] system of programs. Mean excitation 
energies, and the S and L moments, defined in terms of the dipole oscillator 
strengths (fo,) and excitation energies (Eo), were calculated directly as a discrete 
sum over states, e.g. 

Efo ,  Eo, 
In Io - - -  (6) 

2/o. 

2.2. Temperature averages 

To find the average of a property over the Boltzmann distribution of populations 
in the accessible rovibrational states at a particular temperature, one first calculates 
the expectation values of the property, P over the radial rovibrational function 

n(v, J) = (~v,j(R)]P(R)I~,s(R)), (7) 

where ~,  j(R) is obtained from the one-dimensional Schr/Sdinger equation 

h2 d2((R) ( h2 J(J + l) ) 
2m dR ~ + U(R)+2m R 2 E(v,J) { ( R ) = 0  (8) 

using the method of Numerov and Cooley [25, 26]. Here U(R) is a cubic taught- 
spline fit to the electronic ground state potential function of Kolos and Wolniewicz 
[27-29], m is the reduced mass of the pertinent isotopomer, v is the vibrational 
quantum number and J is the end-over-end rotational quantum number. Thermal 
averages at temperature T are then computed as Boltzmann averages over states of 
energy E(v, J) (calculated from Eq. (8)) with degeneracy g(J), 

(P) = Y~,jg(J)e-e(v'J)/kBT p( v, J) 
Z~,j g(J)e -e(~'s)/k"T (9) 

3. Results and discussion 

The results of this investigation are presented in Figs. 1-4. Although we have 
calculated the S (#) and I~ moments for - 6 ~ # ~ 2, it is our experience [20, 30] 
that the higher moments begin to be in error due to the powers to which the 
pseudo-state excitation energies are raised. Furthermore, S(0) has no temperature 
dependence: it is the Thomas-Reiche-Kuhn sum rule. The moments S(1) and 
S( - 1) vary less with isotopic composition than does S( - 2) [15], which corres- 
ponds to the static polarizability of the system. I1 and Io are the mean excitation 
energies for straggling and stopping. As representative of the moments we conse- 
quently report isotopic and temperature dependence of S( - 2), 11, Io and I_ ~. 

As the rovibrational averages presented here depend essentially on bond length 
a comment on the accuracy of the RPA over the appropriate range of bond lengths 
is appropriate. It is well known that the RPA gives the best results near the 
potential minimum, and begins to deviate at longer bond lengths as the excitation 
energies Eo,(R) tend to be too small at large distances. This leads, for example, to 
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Table i ,  Max imum percent variation due to temperature and isotopic composit ion of some moments  of 
the DOSD 

Temperature variation ~ 
Moment  (% of the T = 0, H2 values) Isotopic variation b (%) 

S(1) 8.1 0.4 
S( - 1) 12.7 0.6 
S( - 2) 30.0 1.5 
I1 6.3 0.3 
Io 9.1 0.5 
I 1 9.4 0.5 

" Max imum variation over the temperature range 0-8000 K for the isotopomer with the largest 
variation 

Max imum variation between H2 and D2 isotopomers at any temperature 

values of S( - 2) which are too large [31] (by up to a factor of 3) with respect to 
more sophisticated methods at large R. However, we do not expect that errors in 
the moments at large bondlength will affect the results reported below. The 
vibrational levels with a Boltzmann factor > 0.01 (v ~< 4) all have outer classical 
turning points at small enough distances that our result differs by 10% or less from 
accurate values I-31], indicating that calculation of the moments to higher accuracy 
at large distances would not be expected to alter the result presented here. 

The magnitudes of the isotope and temperature effects on S( - 2), S( - 1), S(1), 
I1, Io and I_ 1 are given in Table 1. The isotope effect is calculated as the difference 
between the values of the property between H2 and D2, while the temperature 
variation is calculated as the variation (as a percentage of the T = 0, H2 values) 
over the temperature range 0-8000 K for the isotopomer with the largest variation. 
Although the temperature averaging can easily be done to higher temperatures, kT 
becomes approximately 20% of the binding energy at 10 kK, so, in order to avoid 
problems with dissociation (which is on the order of a percent at this temperature) 
we present results only to 8000 K. In addition, the question of experimental 
verification above these temperatures becomes moot. The clear conclusion, from 
either the table or the figures, is that the isotope effect, while extant, is at least an 
order of magnitude smaller than is the variation due to temperature. The temper- 
ature variation is approximately a 10% effect at 8000 K, and thus in principle 
measurable, while the isotope effect seems to be below present detection limits. 

The temperature dependencies of the moments of the DOSD presented in Figs. 
1-4 can be traced ultimately back to the dependence of the excitation energies of 
the system on the geometry, in this case bond length, of the molecule. First it is 
convenient to relate them to the average molecular bond length as a function of 
temperature. Due to the skewness of the ground state potential, the average bond 
length increases with increasing rovibratioinal quantum numbers. That  is, <R> 
increases with T as displayed in Fig. 5. As S( - 1) is proportional to <R>, it 
increases with temperature as well. The same holds for other negative/~ moments 
of S(/1). As S(#) has energy weighting E ~+1 (Eqs. (1) and (5)), for moments with 
# < 1 the low energy contributions are weighted most, and the negative moments 
increase with increasing bondlength. This is consistent with a decrease in Eo, as 
(R> (or T) increases, which is a well-known phenomenon in diatomic molecules. 
We believe that it is this effect that determines the temperature dependence in the 
S(#) moments rather than the direct bond length effects in the transition moments. 
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An example is shown in Fig. 1. The opposite behavior occurs for the positive 
moments. 

In Figs. 2-4  it can be seen that all the mean excitation energies (I,, 
# = - 1, 0, 1) decrease with temperature. That is, they have the same behavior as 
the positive S(#) moments. Thus the corresponding three L(#) moments all must 
have the same functional behavior. Further, L(1) must decrease with ( R )  (or T)  
faster than does S(1) (see Eq. (3), although, as the ratio occurs in the exponent, the 
relative change can be small. 

The behavior of L(#) for # -- - 1, 0 can be understood from the decrease in 
Eon with increasing T (or ( R ) )  and the Eo~ + 1 In Eo, energy dependence of L(#). As 
can be seen from Eqs. (2) and (5) the E ~  + l In Eo, weights the high energy region of 
the spectrum of pseudostates most, leading to decreasing (more negative) values of 
L(#) for # ~> - 1. The relative changes in magnitudes of L(1) and S(1) as a function 
of R is in qualitative agreement with what we found for the same ratio for other 
molecules [15]. That is, L(#) is more energy-dependent than is S(#) for # > 0. We 
also observe that the temperature dependence of Io is consistent with the observa- 
tion that the mean excitation energy must decrease from the molecular value at 
ambient temperature (19.10 eV at 300 K as calculated here) to the atomic value of 
14.99 eV [32] in the dissociation limit. 

As the average bond length of H2 at given temperature varies inversely with 
isotopic mass, the bond length for H2 is always the longest at fixed temperature, 
and consequently has the largest value for S( - 2) of the isotopomers, and the 
smallest values of I1, I0 and I_ 2, according to the above arguments. 

Finally, as far as we are aware, temperature or isotope effects on the moments of 
the dipole oscillator strength distribution of molecules have never been measured. 
This is undoubtedly due to the small variation of these moments over small 
temperature range. For  example, cryogenic and ambient temperature measure- 
ments differ by less than 500 K, which gives rise of changes of only 0.3% in e.g. Io, 
a difference well within error bars in a stopping measurement. 

4. Smnmary 

We have presented polarization propagator  calculations of the temperature and 
isotopic dependence of some energy weighted moments of the dipole oscillator 
strength distribution of H2. Due to the anharmonicity of the internuclear potential 
and the large ratios of mass differences among the possible isotopes, H2 should be 
a very favorable case for finding temperature and isotope dependent variations in 
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the  m o m e n t s .  W e  see tha t  the  i so tope  effect is small ,  typ ica l ly  < 1%,  whi le  the  
t e m p e r a t u r e  effect is of  the  o r d e r  of  10%,  in the  e x p e r i m e n t a l l y  acces ib le  range.  
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